Convalescent plasma to prevent or treat COVID-19
How, what and why?

Indian Country COVID-19 ECHO
2 December 2020

Evan M Bloch, MD, MS
Associate Professor of Pathology
Associate Director, Transfusion Medicine Division
Johns Hopkins University School of Medicine
International Health (Joint appt.)
Johns Hopkins Bloomberg School of Public Health
Johns Hopkins Hospital
ebloch2@jhmi.edu
Disclosures

- As a member of the FDA Blood Product Advisory Committee...
 - Any views or opinions that are expressed in this presentation are my own, based on my own scientific expertise and professional judgement; they do not necessarily represent the views of either the Blood Products Advisory Committee or the formal position of FDA, and also do not bind or otherwise obligate or commit either Advisory Committee or the Agency to the views expressed.

- Consultant/speaker
 - Grifols Diagnostic Solutions, Abbott Laboratories, Terumo BCT

- Coinvestigator
 - DoD-funded clinical trial of pathogen reduction using a commercial technology
 - DoD-funded clinical trials e.g. **CSSC 001 and 004 (CCP prophylaxis and early treatment)**

Abbreviation

CCP: COVID-19 Convalescent Plasma
nAbs: Neutralizing antibodies
Objectives

1. **How** did prior experience motivate for use of CCP?
2. **What** have we learned about CCP?
 - Logistical/operations
 - Scientific
 - Clinical
3. **Why** might the lessons be important beyond COVID-19?

Disclaimer
20min is very short
Convalescent plasma emerged early as a leading treatment for COVID-19

Passive transfer (i.e. transfusion or infusion) of antibodies from **convalescent individual** to someone at risk of infection or already infected with virus i.e. SARS-CoV-2

It is NOT ideal
- It is a **temporizing measure** pending availability of refined strategies for
- **Treatment** e.g. hyperimmune globulin, monoclonal antibodies, direct acting antivirals and/or
- **Prevention** (i.e. vaccination)

Biological plausibility and historical precedent for use of convalescent plasma

- Historical and modern examples
- Well tolerated
- **Post-exposure prophylaxis** e.g.
 - Hepatitis, mumps, polio, measles, rabies
- **Treatment** e.g.
 - Spanish Influenza (H1N1)
 - Argentine hemorrhagic fever
 - Severe Influenza A and B
 - Ebola
 - SARS
 - MERS
 - COVID-19

Administration of convalescent plasma early in disease course consistently better

Logistics unprecedented access to CCP

Research
Restricted access to study e.g. to clinical trials

Ethical considerations
Scientific yield

Emergency/compassionate use
Hospitalized patients with predominantly severe and life-threatening COVID-19

1. Emergency/Individual provider
2. Expanded Access Program
 - Government-initiated (Mayo clinic DCC)
 - Scale up and safety
 - Efficacy data? Outcomes better <4d of diagnosis and high titer
3. Emergency Use Authorization: relax criteria

Practicality
Public health need

Daily new confirmed COVID-19 cases
Shown is the rolling 7-day average. The number of confirmed cases is lower than the number of actual cases; the main reason for that is limited testing.

- **Changing epidemiology**
 - Record cases in South/western US
 - Waning reserves

- **Scale-up and access to products**
 - Recruitment and vetting of donors
 - Definition of eligibility
 - Pre-donation screening
 - Antibody testing and interpretation
 - Uncertainty about safety

- **Exponential phase**
 - Demand, complacency

- **Emergency Use Authorization**
 - Donor qualification, supply

Source: European CDC – Situation Update Worldwide – Last updated 19 November, 10:06 (London time)
Wealth of observational data
Case reports, uncontrolled case series and matched control studies

• Generally safe/ well tolerated

• Improvement in clinical status → Weaning off ventilation, improved oxygenation, reduced viral loads, radiological improvement, decreased mortality

• Early administration confers better outcomes
 – EAP: ≤3 days of diagnosis and high titer confers significantly lower mortality

We need more clinical trials

150 studies of convalescent plasma listed on clinicaltrials.gov

The overwhelming majority of studies are targeting a hospitalized patient population, which is less likely to benefit

Studies differ with respect to
1. Design e.g. single arm vs blinded RCTs
2. Timing of administration
3. Primary outcomes
4. Characterization of intervention (e.g. titer)
5. Control (e.g. plasma vs crystalloid vs SOC)
Trials that are currently underway

Prophylaxis

Early disease

Pediatrics

Moderate disease

Adults

Severe/life-threatening

Results expected soon

Only 2 outpatient studies to evaluate CCP for early treatment and 1 study as prophylaxis in adults
Wuhan, China
Severe and Life-threatening COVID-19
CCP + SOC (n = 52) vs SOC alone (n = 51)
NO significant difference...but **underpowered (103/200)**

Netherlands
Moderate to severe COVID-19
300ml of CCP with nAbs ≥1:80
No difference in mortality, hospital stay or day-15 disease severity
BUT...study **underpowered**: 86 (20%) of targeted 426 patients enrolled
44/56 (79%) had neutralizing antibodies titers~ to donors

Spain
Moderate COVID-19
- SOC ± 250-300ml of CCP with anti-SARSCoV-2 IgG+
- Study **underpowered** Incidence waned \(\Rightarrow 81/278 \) (29%)
- **Clinical progression** 0/38 (0%) in CCP vs 6/43 (14%) control
- **Mortality rates** 0% in CCP vs 9.3% of control at days 15 and 29

Baghdad, Iraq
Moderate COVID-19; First 3 days in respiratory care unit
CCP (n=21) vs age- and sex- matched individuals (n=28) SOC
CCP anti-SARSCoV-2 IgG index ≥1.25
Reduced duration of infection by 4 days
Reduction in mortality: 1/21 versus 8/28 in control group

Bahrain (n=40)
Moderate COVID-19
No significant differences in the primary outcome (ventilation) although fewer patients in CCP arm required ventilation and those that did had shorter duration

Argentina
Mild to moderate COVID-19: ≤72hrs of symptoms (n=160)
High titer CCP to patients ≥65yrs with comorbid disease or ≥75yrs
13/80 (16.2%) CCP vs. 25/80 (31.2%) placebo had severe respiratory disease \[\text{RR (95\%CI)} = 0.52 (0.29,0.94); p=0.026\]
61% reduction in need for oxygen

Variable quality, with mixed signals
Encouraging data from Argentina
India
Hospitalized, moderately ill confirmed COVID-19 (n=464)
SOC± 2 doses of 200 mL CP transfused 24 hours apart
Non-significant differences between trial arms
Primary outcome: Composite of progression to severe disease (PaO2/FiO2<100) or all cause mortality at 28 days
High proportion had units with low titer of nAbs

Summary
Multiple trials
Differences by target population: Age i.e. Adult vs Pediatric
characterization of products, intervention (e.g. timing) and outcomes→limitations

Negative finding but key limitation
Overall summary: The impact of human convalescent plasma therapy on COVID-19 patient mortality

Immunology of COVID-19

Antibodies ➔ Class ➔ Subclass ➔ epitope specificity

Neutralizing vs non-neutralizing antibodies

Testing: A rate limiting step

Optimal titers

Predictors of seroreactivity
Ancillary benefits

Screening convalescent subjects at Johns Hopkins (n=292)

<table>
<thead>
<tr>
<th></th>
<th>Antibodies not present</th>
<th>Borderline</th>
<th>Antibodies present*</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgA</td>
<td>263 (90.1%)</td>
<td>13 (4.5%)</td>
<td>16 (5.5%)</td>
</tr>
<tr>
<td>IgG</td>
<td>88 (30.1%)</td>
<td>18 (6.2%)</td>
<td>186 (63.7%)</td>
</tr>
</tbody>
</table>

*Reporting at titer ≥320 and ≥28d
Convalescent individuals (donors) offer insight into a novel pathogen

- **Antibody testing**
 - Neutralization assays (gold standard) impractical ➔ BSL3 and long TAT
 - **Variable performance** of clinical assays
 - Good — albeit imperfect — correlation between ELISA targeting Spike protein and microneutralization
 - “varying degrees of accuracy in predicting nAb activity”
- **Kinetics of infection** ➔ seroconversion 8-21d post-infection
 - Most develop antibodies ➔ ~1/3 are not high titer ➔ variable persistence
 - **Wuhan: 39/40 (97.5%)** convalescent individuals had titers ≥160
 - Avidity ➔ peak 1-4 weeks (ICU vs non-ICU)
- **Optimal titer is not known**
 - Higher titers better ➔ older age, male sex and hospitalization status
- What **isotypes and/or subclasses** of antibodies are optimally effective?

Practically, can one be that selective anyway?
Clinical considerations

Dose of convalescent plasma ➔ Highly variable

- Based on *studies in SARS1*
 - 5 mL/kg of plasma at a titer of ≥160 was utilized ~250 mL/a standard unit
 - Variability in titers between products
 - Incomplete characterization of antibodies

- **The clinical trials**
 - One unit *(200-250mL)* for post-exposure prophylaxis
 - 1-2 units have been proposed for treatment
 - Repeated doses *(up to 6)* in rescue intervention
 - Pediatric transfusions ➔ need to aliquot and dose by body weight

Duration of efficacy

- Unknown ➔ likely few weeks to several months

ABO compatible recommended but variable practice

- E.g. Group A

Single vs multiple units?

Hedge your bets given variable antibody titers?
Do we know what is **optimally informative**?
Is there sufficient **inventory** to support multiple units?
Safety Data
FDA Expanded access program in the US
April 3 to June 2, 2020

Transfusion of ABO-compatible CCP in **20,000** hospitalized adults with severe or life-threatening COVID-19

- 58% of patients in the intensive care unit

The incidence of all serious adverse events (SAEs) in the first 4 hours after transfusion was **<1% (n=146)**
- Deaths (n=63; 0.3%) → 13 related → 12 possible; 1 probable; 0 definite

Thromboembolic or thrombotic events (n=87; <1%), and cardiac events (n=680, ~3% → vast majority unrelated

The seven-day mortality rate was 8.6%

Comparable risk to non-immune plasma transfusion in same population i.e. suggesting safety in hospitalized patients with COVID-19

Making sense of the role of convalescent plasma: Heath vs Research vs Time

Observational studies

Case reports
- 20 January 2020: 1st case reported in the US

Case series
- April 2020

IND for Convalescent plasma
- April 2020

Matched case control
- 12 October 2020

EUA for Convalescent plasma
- 23 August 2020

EUA for Bamlanivimab
- 9 November 2020

Clinical trials
- 11 November 2020: First Phase 3 vaccine results

7.7 million cases of SARS-CoV-2
206,597 deaths in the US alone
Rigorous research is critical— it has proved to be enormously challenging

- **Major logistical challenges**
- **Rapidly changing** landscape of activities
- **Need for greater harmonization** in efforts i.e. creativity/innovation
 - Examples of ingenuity in this regard e.g. COMPILE

Data support **early administration, high titer**

- **There are studies underway that should provide clarity**
 - If definitive: there would be a role for convalescent plasma in future outbreaks and pandemics
 - **Globally scalable** intervention
Acknowledgements

Funding
- Department of Defense
- The Bloomberg Foundation
- The State of Maryland
- NIH/NHLBI
- 1K23HL151826-01 (Bloch)

JHU-Bloomberg School of Public Health
- Arturo Casadevall
- Andrew Pekosz
- David Sullivan
- Bryan Lau
- Amy Wesolowski

JH Pediatrics
- Sanjay Jain
- Oren Gordon

Michigan State University
- Nigel Paneth

JHU-CRU
- Liz Martinez
- Suburban Hospital
- Jackie Lobien
- Peggy Iraola

JHU Donor recruitment
- Imani Burgess
- Ruchee Shrestha
- Robert Hughes
- Annie Wu

Mayo Clinic
- Michael Joyner
- Jeffrey Winters
- Camille van Buskirk

New York Blood Center Enterprises
- Bruce Sacheis
- Beth Shaz

Regulatory
- Lewis Pollack

Washington University in St. Louis
- Brenda Grossman
- Jeffrey Henderson
- Wayne T. Nicholson

Marine Corps
- Matthew Vettraino
- Michael T. Laws

Johns Hopkins University School of Medicine
- Aaron Tobian
- Shmuel Shoham
- Ruchika Goel
- Eric Gehrie
- Mario Caturegli
- Yolanda Eby and HOPE Core lab
- Paul G. Auwaerter
- David Thomas
- Jonathan Zenilman
- David Hager
- Stephanie Katz
- Yvonne Higgins

JHH Blood Bank
- Christi Marshall
- Lisa Shifflett

Anne Arundel Medical Center
- Sandy Robbins

Suburban Hospital
- Jackie Lobien
- Peggy Iraola

JHU Donor recruitment
- Imani Burgess
- Ruchee Shrestha
- Robert Hughes
- Annie Wu

Regulatory
- Lewis Pollack

Washington University in St. Louis
- Brenda Grossman
- Jeffrey Henderson
- Wayne T. Nicholson

Funding
- Department of Defense
- The Bloomberg Foundation
- The State of Maryland
- NIH/NHLBI
- 1K23HL151826-01 (Bloch)